26 research outputs found

    How well did I do? The effect of feedback on affective commitment in the context of microwork

    Get PDF
    Crowdwork is a relatively new form of platform-mediated and paid online work that creates different types of relationships between all parties involved. This paper focuses on the crowdworker-requester relationship and investigates how the option of receiving feedback impacts the affective commitment of microworkers. An online vignette experiment (N= 145) on a German crowdworking platform was conducted. We found that the integration of feedback options within the task description influences the affective commitment positively toward the requester as well as the perceived requester attractiveness

    Familie und Soziale Arbeit : drei begrifflich-theoretische Konzepte von Familie im Überblick

    Get PDF
    Im August 2015 wird das Institut für Kindheit, Jugend und Familie, Departement Soziale Arbeit, ZHAW gegründet. Drei thematische Schwerpunkte sind für das Institut leitend: (I) Kinder- und Jugendhilfe, (II) Soziale Arbeit und Schule sowie (III) Familie und Aufwachsen. Im Mai 2016 nimmt die Fokusgruppe Familie und Aufwachsen ihre Arbeit auf. Das Studienjahr 2016/2017 ist dem Thema Familie gewidmet. Das vorliegende Working Paper dokumentiert die wichtigsten Ergebnisse der Diskussionen

    The Myocyte Expression of Adiponectin Receptors and PPARδ Is Highly Coordinated and Reflects Lipid Metabolism of the Human Donors

    Get PDF
    Muscle lipid oxidation is stimulated by peroxisome proliferator-activated receptor (PPAR) δ or adiponectin receptor signalling. We studied human myocyte expression of the PPARδ and adiponectin receptor genes and their relationship to lipid parameters of the donors. The mRNA levels of the three adiponectin receptors, AdipoR1, AdipoR2, and T-cadherin, were highly interrelated (r ≥ 0.91). However, they were not associated with GPBAR1, an unrelated membrane receptor. In addition, the adiponectin receptors were positively associated with PPARδ expression (r ≥ 0.75). However, they were not associated with PPARα. Using stepwise multiple linear regression analysis, PPARδ was a significant determinant of T-cadherin (P = .0002). However, pharmacological PPARδ activation did not increase T-cadherin expression. The myocyte expression levels of AdipoR1 and T-cadherin were inversely associated with the donors' fasting plasma triglycerides (P < .03). In conclusion, myocyte expression of PPARδ and the adiponectin receptors are highly coordinated, and this might be of relevance for human lipid metabolism in vivo

    Common Genetic Variation in the SERPINF1 Locus Determines Overall Adiposity, Obesity-Related Insulin Resistance, and Circulating Leptin Levels

    Get PDF
    OBJECTIVE: Pigment epithelium-derived factor (PEDF) belongs to the serpin family of peptidase inhibitors (serpin F1) and is among the most abundant glycoproteins secreted by adipocytes. In vitro and mouse in vivo data revealed PEDF as a candidate mediator of obesity-induced insulin resistance. Therefore, we assessed whether common genetic variation within the SERPINF1 locus contributes to adipose tissue-related prediabetic phenotypes in humans. SUBJECTS/METHODS: A population of 1,974 White European individuals at increased risk for type 2 diabetes was characterized by an oral glucose tolerance test with glucose and insulin measurements (1,409 leptin measurements) and genotyped for five tagging SNPs covering 100% of common genetic variation (minor allele frequency ≥ 0.05) in the SERPINF1 locus. In addition, a subgroup of 486 subjects underwent a hyperinsulinaemic-euglycaemic clamp and a subgroup of 340 magnetic resonance imaging (MRI) and spectroscopy (MRS). RESULTS: After adjustment for gender and age and Bonferroni correction for the number of SNPs tested, SNP rs12603825 revealed significant association with MRI-derived total adipose tissue mass (p = 0.0094) and fasting leptin concentrations (p = 0.0035) as well as nominal associations with bioelectrical impedance-derived percentage of body fat (p = 0.0182) and clamp-derived insulin sensitivity (p = 0.0251). The association with insulin sensitivity was completely abolished by additional adjustment for body fat (p = 0.8). Moreover, the fat mass-increasing allele of SNP rs12603825 was significantly associated with elevated fasting PEDF concentrations (p = 0.0436), and the PEDF levels were robustly and positively associated with all body fat parameters measured and with fasting leptin concentrations (p<0.0001, all). CONCLUSION: In humans at increased risk for type 2 diabetes, a functional common genetic variant in the gene locus encoding PEDF contributes to overall body adiposity, obesity-related insulin resistance, and circulating leptin levels

    Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    Get PDF
    In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain

    The Akt substrate Girdin is a regulator of insulin signaling in myoblast cells

    Get PDF
    AbstractAkt kinases are important mediators of the insulin signal, and some Akt substrates are directly involved in glucose homeostasis. Recently, Girdin has been described as an Akt substrate that is expressed ubiquitously in mammals. Cells overexpressing Girdin show an enhanced Akt activity. However, not much is known about Girdin's role in insulin signaling. We therefore analyzed the role of Girdin in primary human myotubes and found a correlation between Girdin expression and insulin sensitivity of the muscle biopsy donors, as measured by a hyperinsulinemic–euglycemic clamp. To understand this finding on a cellular level, we then investigated the function of Girdin in C2C12 mouse myoblasts. Girdin knock-down reduced Akt and insulin receptor substrate-1 phosphorylation. In contrast, stable overexpression of Girdin in C2C12 cells strikingly increased insulin sensitivity through a massive upregulation of the insulin receptor and enhanced tyrosine phosphorylation of insulin receptor substrate-1. Furthermore, Akt and c-Abl kinases were constitutively activated. To investigate medium-term insulin responses we measured glucose incorporation into glycogen. The Girdin overexpressing cells showed a high basal glycogen synthesis that peaked already at 1nM insulin. Taken together, we characterized Girdin as a new and major regulator of the insulin signal in myoblasts and skeletal muscle

    Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans

    No full text
    Objective: Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results: We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion: G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. Keywords: Granulocyte colony-stimulating factor (G-CSF), Saturated fatty acid-induced myokine, Fatty acid-induced insulin resistanc

    Common variation in the sodium/glucose cotransporter 2 gene SLC5A2 does neither affect fasting nor glucose-suppressed plasma glucagon concentrations.

    No full text
    Inhibition of sodium/glucose cotransporter 2 (SGLT2), the key transport protein in renal glucose reabsorption, promotes glucose excretion and represents a new concept in the therapy of type-2 diabetes. In addition, SGLT2 inhibition elevates circulating glucagon concentrations and enhances hepatic glucose production. Since SGLT2 is expressed in human pancreatic α-cells and regulates glucagon release, we tested whether common variants of the SGLT2 gene SLC5A2 associate with altered plasma glucagon concentrations in the fasting state and upon glucose challenge.A study population of 375 healthy subjects at increased risk for type-2 diabetes, phenotyped by a 5-point oral glucose tolerance test (OGTT) and genotyped for recently described SLC5A2 tagging single nucleotide polymorphisms (SNPs), was selected for plasma glucagon measurements.After adjustment for gender, age, body mass index, and insulin sensitivity, the four tagging SNPs (rs9924771, rs3116150, rs3813008, rs9934336), tested separately or as genetic score, were neither significantly nor nominally associated with plasma glucagon concentrations at any time during the OGTT, with the inverse AUC of glucagon or the glucagon fold-change during the OGTT (p ≥ 0.2, all). Testing for genotype-related differences in the time course of the glucagon response using MANOVA did also not reveal any significant or nominal associations (p ≥ 0.5, all).We could not obtain statistically significant evidence for a role of common SLC5A2 variants in the regulation of glucagon release in the fasting state or upon glucose challenge. Moreover, the reported nominal effects of individual SLC5A2 variants on fasting and post-challenge glucose levels may probably not be mediated by altered glucagon release
    corecore